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ABSTRACT
Objective: A roadway departure crash is one in which a vehicle crosses an edge line, a centerline,
or otherwise leaves the traveled way. These crashes that involve run-off-road and cross-median/
centerline head-on collisions tend to be more severe than other crash types. According to the
NHTSA Fatality Analysis Reporting System database, a total of 7,833 people perished in crashes
involving fixed roadside objects in 2017, accounting for 21 percent of the total number of fatalities
in the United States. Several previous studies have reported that rural bridge-related crashes result
in more fatalities due to their being mostly the fixed-object crash type. As such, further in-depth
investigation of this type of crash is necessary. Due to the lack of a comprehensive database that
includes bridge-related crashes and bridge characteristics, identifying the key factors contributing
to this type of crash is a challenging task that is addressed in this paper.
Method: Study team gathered and compiled five years (2011–2015) of crash data from the New
Jersey crash database and the characteristics of bridges from the Long-Term Bridge Performance
portal. A Firth’s penalized-likelihood logistic regression model was developed to examine the
impact of explanatory variables on crash severity.
Results: Based on the five years (2011–2015) of crash data, significant factors (i.e., driver age, wea-
ther conditions, surface conditions, lighting conditions, speed limit, roadway characteristics, and
direction of traffic) were identified that affect the severity of bridge-related crashes in Middlesex
County, New Jersey.
Conclusion: This model is an appropriate tool for predicting the impact of all the confounding
variables on the probability of bridge-related crashes while also considering the rareness of the
event. Based on the obtained odds ratio, the various effects of the identified variables are dis-
cussed, and recommendations made regarding countermeasures policymakers can establish to
reduce the number of these crashes in New Jersey.
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Introduction

A roadway departure crash is defined by the Federal
Highway Administration (FHWA) as “a crash in which a
vehicle crosses an edge line, a centerline, or otherwise leaves
the traveled way” (FHWA 2019a). These crashes, which
involve run-off-road and cross-median/centerline head-on
collisions, tend to be more severe than other crash types
(Jalayer and Zhou 2016a, 2016b). According to the FHWA,
between year 2015 and 2017, an average of 52 percent of
motor vehicle traffic fatalities occurred each year due to
roadway departure crashes (FHWA 2019a). Moreover, a
total of 7,833 people died in fixed-object crashes (e.g., trees,
bridge pier, traffic barriers, and guardrail ends) in 2017,
accounting for 21 percent of the total fatalities in the United
States (U.S., IIHS 2017). Several previous studies (Jalayer
and Zhou 2016a) have reported that bridge-related crashes

result in more fatalities due to their being mostly the fixed-
object crash type. As such, further in-depth investigation of
this type of crash is necessary.

Bridges are an essential component of the U.S. highway
system (Mehta et al. 2015). According to the FHWA’s
Long-Term Bridge Performance (LTBP) program, there
are more than 611,000 bridges across the U.S. It should
be noted that the physical and operational characteristics
of bridges differ significantly from those of roads and
highways (Retting et al. 2000; Mehta et al. 2015).
Specifically, the traffic lanes on bridges are usually nar-
rower than the approach roads and usually lack shoulders
that can safely accommodate vehicles and provide drivers
with more space to maneuver and avoid crashes. Notably,
bridges have different components such as railings, piers,
surface wear, and guardrails that can cause safety hazards
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to vehicles traveling on or under them. The bridge railing
provides protection at the edges of structures for traffic
and pedestrians. The bridge railing should be strong
enough to safely redirect the vehicle without serious snag-
ging or overturning (NYSDOT 2006). According to the
Federal Highway Administration (FHWA), the starting
point of the guardrail is referred to as the end treatment.
To absorb the energy of an impact, one common treat-
ment is to have the head slide down the length of the
guardrail (FHWA 2020). Therefore, bridge-related charac-
teristics significantly affect the safety of traffic traveling
along and near bridges (Mehta et al. 2015).

Over the past years, several studies have focused on iden-
tifying the major contributing factors to bridge-related
crashes. Turner (1984) analyzed four years of bridge crash
data in Texas and found that narrow bridges (less than
28 ft.) were associated with higher crash rates. In a recent
study, Elvik et al. (2019) developed a negative binomial
regression model to analyze seven years of data (2010–2016)
on crashes that had occurred in or around 6,824 road
bridges in Norway. The authors of the study found that traf-
fic volume significantly contributed to the likelihood of
bridge crashes. The results of a study conducted by Khan
et al. (2009) revealed that surface conditions (ice with a
lower coefficient of friction) greatly contributed to the fre-
quency of bridge crashes. Mehta et al. (2015) developed
safety performance functions to estimate the expected num-
ber of crashes on bridges in Alabama. The results of that
study demonstrated that bridge length, percentage of trucks,
and Annual Average Daily Traffic (AADT) contributed sig-
nificantly to bridge-related crashes. Buth et al. (2010) inves-
tigated the Minnesota (2002–2006) and Texas (1998–2001)
data for 32,934 large-vehicle/fixed-object crashes in which
the vehicle had hit a bridge structure. The results showed
that lane width, bridge density (number of bridges per
mile), and bridge width were all significantly associated
with the bridge crashes. Schrock et al. (2012) explored the
association between pavement conditions, roadway geom-
etry, and large trucks in fixed-object crashes over bridges.
The authors concluded that the injury severities associated
with fixed-object crashes that involved bridges (e.g.,
bridge rails, headwalls, piers, abutments, or guardrails)
were 4.93 times higher on a limited access facility such as
interstate or freeway. In another study, Sagberg et al.
(2020) analyzed seven years of single-vehicle crashes on
or close to road bridges in Norway. The results indicated
that wider bridges had relatively lower crash risk at
entrance compared to exit zones.

Despite the several bridge-related crash studies reported
in the literature (Turner 1984; Buth et al. 2010; Schrock
et al. 2012; Mehta et al. 2015; Elvik et al. 2019), very few
(e.g., Schrock et al. 2012; Sagberg et al. 2020) have only
identified or compared the factors associated with the injury
severity of bridge-related cashes. Due to the minimal relative
number of bridge-related crashes and the lack of a compre-
hensive database that includes bridge-related crashes and
bridge characteristics, identifying the key factors contribu-
ting to this type of crash is a challenging task, which we

address in this paper. A Firth’s penalized-likelihood logistic
regression was developed to characterize bridge-related
crashes. This model is an appropriate tool for predicting the
impact of all the confounding variables on the severity of
bridge-related crashes while also considering the rareness of
the crash event.

Method

Firth’s penalized-likelihood logistic regression

Based on the compiled crash and bridge-related data from
the New Jersey Crash Database and Long-Term Bridge
Performance (LTBP) portal, three conditions were identi-
fied concerning bridge-related crashes, including the rarity
phenomenon, unbalanced data, and disproportionality of
explanatory variables. The observed crash frequency results
indicate that vehicular crashes involving bridges are spor-
adic events; consequently the sample size is very small.
Second, some categories for bridge-related crashes have
very low frequency, which can cause computational prob-
lems (Hosmer et al. 2013). For example, categories such as
speed limit between 36 and 45mph, vehicle age (unknown
group), and median type (other group) have less than 2
crash records. Third, statistical guidelines recommend hav-
ing at least ten observations per each explanatory variable
to construct an effective model and calculate the param-
eter estimates (Gao and Shen 2007). These issues can limit
the applicability of standard logistic regression since it
uses maximum likelihood estimation (MLE), which suffers
from small-sample bias. In this situation, a penalized-like-
lihood approach (i.e., Firth’s logistic regression) is sug-
gested, which can avoid the shortcomings of MLE
(Firth 1993).

Firth’s penalized-likelihood logistic regression model is a
generalization of MLE models that can effectively avoid the
bias that otherwise arises in calculations due to the small
sample size and rareness of the event (which is the case in
this study). We note that Firth’s penalized-likelihood logistic
regression model has specifically been employed in the med-
ical sciences. For instance, Mulla et al. (2012) investigated a
sample of 138 patients, only 16 of which were diagnosed
with preeclampsia, for which computational problems would
have arisen in an analysis using MLE methods. Xu et al.
(2012) examined a sample size of 67 patients, only 28 of
whom had developed hypertension, which is a minimal sam-
ple size if using the MLE method. Considering the type of
dependent variable in this study (injury crashes vs. prop-
erty-damage-only crashes), a binary logistic regression is
recommended.

Firth introduced a penalized MLE into the binary model
that can counteract the bias associated with MLE (Firth
1993). The log-likelihood can be expressed as an exponential
family model as follows:

lðbÞ ¼ tbn � KðbnÞ, n ¼ 1, :::, k (1)

where bn is the regression parameter to be estimated, t is
the vector of the observed sufficient statistics, and K is the
number of parameters estimated. The derivative of the log-
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likelihood, the score function, is employed to calculate the
MLE of parameter bn as follows:

ðbnÞ ¼ l0ðbnÞ ¼ t � KðbnÞ, n ¼ 1, :::, k: (2)

The score function is the partial derivative of the log-like-
lihood function. To penalize the MLE, Firth replaced the
score function of the binary model with a modified score
function as follows:

UðbnÞ� ¼ UðbnÞ þ an, n ¼ 1, :::, k (3)

where an has the nth entry, which is represented as:

an ¼ 1=2 tr ½IðbÞ�1@IðbÞ=bn�, n ¼ 1::, k (4)

where tr is the trace function, and (b) is the Fisher’s infor-
mation matrix, the negative expected value of the second
derivative of the log-likelihood. Using this method, the MLE
drops to zero. For small samples, Firth’s method is more
accurate in estimating coefficients and evaluating confidence
intervals with respect to coverage probabilities, as compared
to the performances of the broad class of generalized linear
models (Van der Paal 2014). After calculating the parameter
estimates for statistically significant variables, the odds ratio
(OR) was calculated as a relative measure of the effect. The
OR can be used to better understand the direction and mag-
nitude of the change in the probability of the dependent
variable with a one-unit change in the specific variable. That
is, when the OR is higher than one, the study group (here,
injury crashes) is more likely to have the specific character-
istic, as defined in the category, than is the reference cat-
egory. A similar explanation applies to an OR less than one.

Data

In this study, the required data for analysis were obtained
from two primary sources: the New Jersey Crash Database
and Long-Term Bridge Performance (LTBP) portal. Unlike
other crash types that require only the development of spe-
cific filters to prepare the final dataset for analysis, bridge-
related crashes require some extra steps prior to analysis to
ensure that the dataset has the highest possible accuracy.
Specifically, possible bridge-related crashes were identified
by defining several filters and then additional steps were
taken to verify the actual occurrence of these crashes. We
first employed a filter to determine the ROR crashed from
the crash database, and then we filtered out single-vehicle
crashes. The first filter phase produced several crashes that
had not occurred on bridges. For example, by considering
the vehicle direction, travel crashes that occurred along a
bridge underpass were excluded from further analysis.
Visual inspection using Google Street View and Microsoft’s

Bird’s Eye view were used to verify the locations of crashes.
After filtering out non-bridge-related crashes via steps men-
tioned above, our final dataset included 284 single-vehicle,
run-off-road crashes involving vehicles striking a bridge-
related component that had occurred on 116 public bridges
in Middlesex County, New Jersey from 2011 to 2015.

Information regarding the bridge characteristics (i.e., sur-
face wear, bridge railing, guardrail end, bridge roadway
width, bridge length, left and right curb/sidewalk widths,
median type, and average daily traffic) was obtained from
the LTBP portal. This portal includes a variety of informa-
tion related to the historical conditions and traffic data of
bridges from 1992–2016, environmental data such as the
number of snowfalls and freeze-thaw cycles, a field-testing
database of 80 bridges, and legacy information (FHWA
2019b). The LTBP portal is a web-based platform developed
by an FHWA LTBP program that collected all data related
to bridge performance. Tables A1 (see online supplement)
and Table 1 list the explanatory variables along with their
percentages used in this study. When looking at these tables,
a few points are worthy of mention. For example, almost
40% of bridge-related crashes during this period occurred
during the evening and night hours. Moreover, approxi-
mately 60% of bridge-related crashes occurred during
autumn and winter and 94% of the drivers had not
been impaired.

Results

As previously discussed, for the purpose of this study,
Firth’s model was found to be more suitable than an MLE
model for the analysis of the study variables. To estimate
the effect of various confounding factors contributing to the
probability of bridge-related crashes, the R software package
“logistf” was employed (Heinze et al. 2013). First, a model
was fit with all the possible contributing factors and then a
backward elimination procedure was adopted, based on the
penalized-likelihood ratio test, to identify a model that best
agreed with the crash data. A forward selection process pro-
duced a similar result. Table 2 shows a summary of the
results of the Firth’s model, including parameter estimates
and their corresponding standard errors and ORs. The ORs
are used to better understand the direction and magnitude
of the change in the probability of the dependent variable
with a one-unit change in the specific variable. That is,
when the OR is higher than one, the study group (here,
injury crashes) is more likely to have the specific character-
istic, as defined in the category, than is the reference cat-
egory. A similar explanation applies to an OR less than one.
To be specific, according to Table 2, the OR higher than
one indicated that particular category increases the likeli-
hood of injury-severity crashes compared to the reference
group. All of the estimated parameters included in the
model are statistically significant at the 95 percent confi-
dence interval. The results of the analysis demonstrated that
a variety of factors significantly contributed to injury sever-
ity. The results from the best-fitted model indicate that
bridge-related injury crashes were more likely to involve a

Table 1. Description of explanatory variables (continues variables).

Variable Min Mean Max

Continues variables�Ln ADT 5.6 10.5 12.3
Bridge roadway width (m) 6.6 22.1 66.4
Length (m) 6.1 62.8 479.1
Left curb/Sidewalk width (m) 0.0 0.7 3.7
Right curb/Sidewalk width (m) 0.0 0.7 4.3
�Ln: National Logarithm.
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male driver (OR ¼ 1.67), to occur in clear weather condi-
tions (OR ¼ 2.18), and on one-way roads (OR ¼ 2.57).
Similarly, bridge-related injury crashes were less likely to
occur in dry surface conditions (OR ¼ 0.39), on straight
roads (OR ¼ 0.35), in dark lighting conditions (OR ¼ 0.27),
in the afternoon (OR ¼ 0.45), and on facilities with speed
limits between 26mph and 35mph (OR ¼ 0.43).

Discussion

In this study, considering the lighting conditions, the time
of day was categorized into four categories, including morn-
ing (6:00–12:00), afternoon (12:00–18:00), evening
(18:00–24:00), and night (0:00–6:00). In Table 2, morning
and afternoon periods account for about 60% of the total
number of bridge-related crashes. The results of the analysis
indicate that bridge-related crashes during the afternoon
were 0.45 times less likely or probable (less severe) to
involve injuries compared with those in the morning. This
result is in good agreement with several other studies
(PennDOT 2017).

With respect to gender, male drivers (65.8 percent) expe-
rienced more bridge-related crashes than female drivers
(34.2 percent), which means that male drivers were 1.67
times more likely to be involved in injury-related crashes
than females. Several reasons might explain this finding. For
example, men drive more miles than women and tend to
use more risky behaviors such as driving under the influence
of alcohol or drugs and speeding, which results in more
severe crashes (Levi et al. 2015; Lawrence and Pace 2017).

According to the estimation results presented in Table 2,
weather conditions significantly contributed to the injury
severity associated with bridge-related crashes. Specifically,
bridge-related crashes in clear weather conditions were 2.18
times more likely to be injury-related crashes. This finding
is also in a good agreement with those reported by
Christoforu et al. (2012) and Jalayer et al. (2018), which
indicates that drivers are more likely to be vigilant regarding
their surroundings during adverse weather conditions, which
mitigates the severity of injuries.

Similar to weather conditions, the surface condition was
also found to significantly contribute to the injury severity
of bridge-related crashes. Compared to dry surface condi-
tions, wet surface conditions contributed significantly to the
severity of injuries. Specifically, bridge-related crashes in dry
surface conditions were 39 percent less likely to result in
severe injury. Again, this finding is consistent with other
research results (Retting et al. 2000).

In this study, the speed limit was divided into five catego-
ries, including less than 25mph, 26–35mph, 36–45mph,
46–55mph, and faster than 56mph. The speed-related
results show that bridge-related crashes that occurred at
speed limits between 26mph and 35mph were 0.43 times
less likely to result in injuries compared to those that hap-
pened at speed limits below 25mph. No specific reasons
were found to explain this phenomenon. Further studies
and more data are needed to determine whether this trend
persists over a more extended time period.

When comparing injury and property-damage-only bridge-
related crashes, the direction of traffic was found to be a stat-
istically significant factor. As shown in Table 2, bridge-related
crashes that occurred in one-way traffic were 2.57 times more
likely to have injuries than those with two-way traffic.

Lighting conditions also played a significant role in the
injury severity of bridge-related crashes. In this study, light-
ing conditions were classified into four categories: daylight,
dawn/dusk, dark-light, and dark-not lit. Based on the com-
piled data, 56.7 percent of the bridge-related crashes
occurred during daylight. It should be noted that darkness,
when there is no lighting provided, decreases the severity of
crashes (27 percent decrease in the injury crashes) compared
to those in daylight conditions. Several factors might explain
this finding. For instance, in dark conditions, drivers tend to
engage in more risk-compensating behaviors (e.g., driving at
lower speeds, paying more attention to the surroundings),
which results in crashes with less severe outcomes
(Anarkooli and Hosseinlou 2016).

With regard to roadway characteristics, bridge-related
crashes that happen on straight road segments are 0.35
times less likely to produce injuries than those that happen
along curves. Roadway curvatures are known to reduce
available sight distance and decrease vehicle-control capabil-
ities, which increase the probabilities of crashes and injuries
(Jalayer and Zhou 2016a).

Based on the findings obtained in this study, several
countermeasures and recommendations can be suggested to
reduce the occurrence of this type of crash. Behavior-based
countermeasures may consider targeting male drivers in
particular, given that this driver group was significantly
overrepresented by higher OR values. Engineering counter-
measures can focus on increasing bridge widths or approach
widths. Guiderail upgrades and signage and lighting
enhancements are also recommended. Similar to other stud-
ies, this study also has some limitations. For example, the
data used in this study were from just one county in New
Jersey. Incorporating more data from other counties and
states would not only bolster the sample size but might also
lead to a more comprehensive result that could facilitate the

Table 2. Firth’s model results.

Explanatory variable

Firth’s model

OR (odds ratio)b S.E.

Time of day
Afternoon (12–18) vs Morning (6–12) (ref) �0.792 0.187 0.453
Driver dender
Male vs Female (ref) 0.516 0.548 1.675
Weather conditions
Clear vs Adverse (ref) 0.780 1.07 2.181
Surface conditions
Dry vs Wet (ref) �0.942 0.196 0.39
Speed limit
26mph to 35mph vs Less than 25mph (ref) �0.837 0.251 0.433
Direction of traffic
One-way vs Two-way (ref) 0.947 1.588 2.577
Lighting condition
Dark-not light vs Daylight (ref) �1.309 0.229 0.27
Roadway characteristic
Straight vs Curve (ref) �1.036 0.454 0.355

ref: reference variable.
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development of better countermeasures and strategies.
Another limitation of this study is the inevitable role of
human error in the data collection process by police officers,
which affects the level of detail and accuracy of the obtained
significant variables.
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